Skip to main content
Log in

Transcriptional regulation of the transforming growth factor-β2 gene in glioblastoma cells

  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The expression of transforming growth factor-β2 (TGF-β2) appears to play a strong role in the establishment and progression of glial tumors. In particular, elevated expression of TGF-β2 appears to be responsible for the impaired cellmediated immunity often observed in patients with a glioblastoma. This study examined the regulation of the TGF-β2 at the transcriptional level in the U87MG glioblastoma cell line. We demonstrate that a cAMP response element/activating transcription factor (CRE/ATF) site and an E-box motif located just upstream of the transcription start site are essential for the transcription of the TGF-β2 gene in U87MG cells Gel mobility analysis determined that activating transcription factor-1, and possibly cAMP-responsive element binding protein binds to the CRE/ATF site, and upsteam stimulatory factor (USF) 1 and USF2 bind to the E-box motif. Interestingly, expression of a dominant negative USF protein down-regulates TGF-β2 activity by 80–95% in glioblastoma cells. We conclude that the binding of transcription factors, in particular the USF proteins, to the TGF-β2 promoter is essential for its expression and possibly its up-regulation in glioblastomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albino, A. P.; Davis, B. M.; Nanus, D. M. Induction of growth factor RNA expression human malignant melanoma: markers of transformation. Cancer Res. 51:4815–4820; 1991.

    PubMed  CAS  Google Scholar 

  • Bodmer, S.; Strommer, K.; Frei, K., et al. Immunosuppression and transforming growth factor-β in glioblastoma. J. Immunol. 143:3222–3229, 1989.

    PubMed  CAS  Google Scholar 

  • Chrivia, J. C.; Kwok, R. P. S.; Lamb, N., et al. Phosphorylated CREB binds specfically to the nuclear protein CBP. Nature 365:855–859; 1993.

    Article  PubMed  CAS  Google Scholar 

  • deMartin, R.; Haendler, B.; Hofer-Warbinek, R., et al. Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-β gene family. EMBO. J 6:3673–3677; 1987.

    CAS  Google Scholar 

  • Fakhrai, H.; Dorigo, O.; Shawler, D. L., et al. Eradication of established intracranial rat glioma by transforming growth factor β antisense gene therapy. Proc. Natl. Acad. Sci. USA. 93:2909–2914; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Fontana, A.; Bodmer, S., et al. Transforming growth factor-beta inhibits the generation of cytotoxic T-cells in virus-infected mice. J. Immunol. 143:3230–3234; 1989.

    PubMed  CAS  Google Scholar 

  • Fontana, A.; Hengartner, H.; deTribolet, N.; Weber, E. Glioblastoma cells release interleukin 1 and factors inhibiting interleukin, 2-mediated effects. J. Immunol. 132:1837–1844; 1984.

    PubMed  CAS  Google Scholar 

  • Fried, M.; Crothers, D. M. Equilibria and kinetics of lac repressor-operator interactions by polacrylamide gel electrophoresis. Nucleic Acids Res. 9:6505–6525; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Hall, C. V.; Jacobs P. E.; Ringold, G. M.; Lee, F. Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. Mol. Appl. Genet. 2:101–109; 1983.

    PubMed  CAS  Google Scholar 

  • Huber, D.; Philipp, J.; Fontana, A. Protease inhibitors interfere with the transforming growth factor-β-dependent but not the transforming growth factor-β-independent pathway of tumor cell-mediated immunosuppression. J. Immunol. 148:277–284; 1992.

    PubMed  CAS  Google Scholar 

  • Jachimczak, P.; Bodhahn, U.; Schneider, J., et al. The effect of transforming growth factor-β2-specific phosphorothioate-antisense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J. Neurosurg. 78:944–951; 1993.

    PubMed  CAS  Google Scholar 

  • Kehrl, J. H.; Roberts, A. B.; Wakefield, L. M., et al. Transforming growth factor β is an important immunomodulatory protein for human B lymphocytes. J. Immunol. 137:3855–3855; 1986b.

    PubMed  CAS  Google Scholar 

  • Kehrl, J. H.; Wakefield, L. M.; Roberts, A. B., et al. Production of transforming growth factor β by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med. 163:1037–1050; 1986a.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, D.; Kim, S. J.; Rizzino A. Transcriptional activation of the type II transforming growth factor-β receptor gene upon differentiation of embryonal carcinoma cells. J. Biol. Chem. 273:21,115–21,124; 1998.

    CAS  Google Scholar 

  • Kelly, D.; O'Reilly, M.; Rizzino, A. Differential regulation of the transforming growth factor type-β2 gene promoter in embryonal carcinoma cells and their differentiated cells. Dev. Biol. 53:172–175; 1992.

    Article  Google Scholar 

  • Kelly, D. L.; Rizzino, A. Growth regulatory factors and carcinogenesis: the roles played by transforming growth factor β, its receptors and signaling pathways. Anticancer Res. 19:4791–4808; 1999.

    PubMed  CAS  Google Scholar 

  • Kelly, D.; Scholtz, B.; Orten, D., et al. Regulation of the transformong growth factor-β2 gene promoter in embryonal carcinoma cells and their differentiated cells: differential utilization of transcription factors. Mol. Reprod. Dev. 40:135–145; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kingsley-Kallesen, M.; Johnson, L.; Scholtz, B.; Kelly, D.; Rizzino, A. Transcriptional regulation of the TGF-β2 gene in choriocarcinoma cells and breast carcinoma cells: differential utilization of cis-regulatory elements. In Vitro Cell. Dev. Biol. 33:294–301; 1997.

    CAS  Google Scholar 

  • Kingsley-Kallesen, M. L.; Kelly, D.; Rizzino, A. Transcriptional regulation of the transforming growth factor-β2 promoter by cAMP-responsive element-binding protein (CREB) and activating transcription factor-1 (ATF-1) is modulated by protein kinases and the coactivators p300 and CREB-binding protein. J. Biol. Chem. 274:34,020–34,028; 1999.

    Article  CAS  Google Scholar 

  • Madisen, L.; Webb, N. R.; Rose, T. M., et al. Transforming growth factor-beta 2: cDNA cloning and sequence analysis. DNA 7:1–8; 1988.

    PubMed  CAS  Google Scholar 

  • Malipiero, U.; Höller, M.; Werner, U.; Fontana, A. Sequence analysis of the promoter region of the glioblastoma derived T cell suppressor factor/transforming growth factor (TGF)-β2 gene reveals striking differences to the TGF-β1 and-β3 genes. Biochem. Biophys. Res. Commun. 171:1145–1151; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Massagué, J.; Blain, S. W.; Lo, R. S. TGF-beta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309; 2000.

    Article  PubMed  Google Scholar 

  • Massagué, J.; Cheifetz, S.; Laiho, M., et al. Transforming growth factor-beta. Cancer Surv. 12:81–103; 1992.

    PubMed  Google Scholar 

  • Meier, J. L.; Luo, X.; Sawadogo, M.; Straus, S. E. The cellular transcription factor USF cooperates with varicella-zoster virus immediate-early protein 62 to symmetrically activated a bidirectional viral promoter. Mol. Cell. Biol. 14:6896–6907; 1994.

    PubMed  CAS  Google Scholar 

  • Miller, D. A.; Lee, A.; Pelton, R. W., et al., Murine transforming growth factor-β2 cDNA sequence and expression in adult tissues and embryos. Mol. Endocrinol. 3:1108–1114; 1989.

    Article  PubMed  CAS  Google Scholar 

  • O'Reilly, M. A.; Geiser, A. G.; Kim, S.-J., et al. Identification, of an activating transcription factor (ATF) binding site in the human transforming growth factor-β2 promoter. J. Biol. Chem. 267:19,938–19,943; 1992.

    Google Scholar 

  • Pfeilschifter, J. Transforming growth factor-β. In: Habenicht, A., ed. Growth factors, differentiation factors and cytokines. Heidelberg: Springer-Verlag; 1990:56–65.

    Google Scholar 

  • Reed, J. A.; McNutt, S.; Prieto, V. G.; Albino, A. Expression of transforming growth factor-β2 in malignant melanoma correlates with the depth of tumor invasion. Am. J. Pathol. 145:97–104; 1994.

    PubMed  CAS  Google Scholar 

  • Ristow, H. J. BSC-1 growth inhibitor/type β transforming growth factor is a strong inhibitor of thymocyte proliferation. Proc. Natl. Acad. Sci. USA 83:5531–5533; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, A. B.; Spron, M. B. Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8:1–9; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal, N. Identification of regulatory elements of cloned genes with functional assays. In: Berger, S. L.; Kimmel, A. R., eds. Methods in enzymology: guide to molecular cloning techniques. Vol. 152. San Diego, CA: Academic Press; 1987:704–720.

    Chapter  Google Scholar 

  • Roszman, T.; Elliot, L. Brooks, W. Modulation of T-cell function by gliomas. Immunol. Today 12:370–374; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Ruffini, P. A.; Rivoltini, L.; Silvani, A., et al. Factors, including transforming growth factor β, released in the glioblastoma residual cavity, impair activity of adherent lymphokine-activated killer cells. Cancer Immunol. Immunother. 36:409–416; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Scholtz, B; Kelly, D.; Rizziono, A. Cis-regulatory elements and transcription factors involved in the regulation of the transforming growth factor-β2 gene. Mol. Reprod. Dev. 41:140–148; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Scholtz, B.; Kingsley-Kallesen, M.; Rizzino, A. Transcription of the transforming growth factor-β2 gene is dependent on an E-box located between an essential cAMP response element/activating transcription factor motif and the TATA box of the gene. J. Biol. Chem. 271:32,375–32,380; 1996.

    Article  CAS  Google Scholar 

  • Seed, B.; Sheen, J. Y. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene 67:271–277; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura, A.; Ogawa, Y.; Kitani, T., et al. Calmodulin-dependent protein kinase II potentiates transcriptional activation through activating transcription factor 1 but not cAMP response element-binding protein. J. Biol. Chem. 271:17,957–17,960; 1996.

    Article  CAS  Google Scholar 

  • Sporn, M. B.; Roberts, A. B.; Wakefield, L. M.; Asoian, R. K. Transforming growth factor-beta: biological function and chemical structure. Science 233:532–534; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Sun, P.; Lou, L.; Maurer, R. A. Regulation of activting transcription factor-1 and the cAMP response element-binding protein by Ca2+/calmodulin-dependent protein kinases type I, II and IV. J. Biol. Chem. 271:3066–3073; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Wahl, S. M.; Hunt, D. A.; Wong, H.L., et al. Transforming growth factor-β is a potent immunosuppressive agent that inhibits IL-1 dependent lymphocyte proliferation J. Immunol. 140:3026–3032; 1998.

    Google Scholar 

  • Wrann, M.; Bodmer, S.; deMartin, R., et al. T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-β. EMBO J. 6:1633–1636; 1987.

    PubMed  CAS  Google Scholar 

  • Yoshizumi, M.; Wang, H.; Hsieh, C. M., et al. Down-regulation of the cyclin A promoter by transformign growth factor-beta 1 is associated with a reduction in phosphorylated activating transcription factor-1 and cyclic AMP-responsive element-binding protein. J. Biol. Chem. 272:22,259–22,264; 1997.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angie Rizzino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kingsley-Kallesen, M., Luster, T.A. & Rizzino, A. Transcriptional regulation of the transforming growth factor-β2 gene in glioblastoma cells. In Vitro Cell.Dev.Biol.-Animal 37, 684–690 (2001). https://doi.org/10.1290/1071-2690(2001)037<0684:TROTTG>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2001)037<0684:TROTTG>2.0.CO;2

Key words

Navigation